Transformation Equivariant Boltzmann Machines

نویسندگان

  • Jyri J. Kivinen
  • Christopher K. I. Williams
چکیده

We develop a novel modeling framework for Boltzmann machines, augmenting each hidden unit with a latent transformation assignment variable which describes the selection of the transformed view of the canonical connection weights associated with the unit. This enables the inferences of the model to transform in response to transformed input data in a stable and predictable way, and avoids learning multiple features differing only with respect to the set of transformations. Extending prior work on translation equivariant (convolutional) models, we develop translation and rotation equivariant restricted Boltzmann machines (RBMs) and deep belief nets (DBNs), and demonstrate their effectiveness in learning frequently occurring statistical structure from artificial and natural images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-valued energy function in neural networks with asymmetric connections.

We apply the graphic transformation method[11],[25] to obtain the steady state distribution of asymmetric Boltzmann machines as an extension of the symmetric equilibrium case. We give the magnitude of deviation from the equilibrium explicitly as a function of the asymmetry in the connections between the neurons. We show that the steady state of asymmetric Boltzmann machines is characterized by ...

متن کامل

Notes on Boltzmann Machines

I. INTRODUCTION Boltzmann machines are probability distributions on high dimensional binary vectors which are analogous to Gaussian Markov Random Fields in that they are fully determined by first and second order moments. A key difference however is that augmenting Boltzmann machines with hidden variables enlarges the class of distributions that can be modeled, so that in principle it is possib...

متن کامل

Experiments with Stochastic Gradient Descent: Condensations of the Real line

It is well-known that training Restricted Boltzmann Machines (RBMs) can be difficult in practice. In the realm of stochastic gradient methods, several tricks have been used to obtain faster convergence. These include gradient averaging (known as momentum), averaging the parameters w, and different schedules for decreasing the “learning rate” parameter. In this article, we explore the use of con...

متن کامل

Learning and Evaluating Boltzmann Machines

We provide a brief overview of the variational framework for obtaining deterministic approximations or upper bounds for the log-partition function. We also review some of the Monte Carlo based methods for estimating partition functions of arbitrary Markov Random Fields. We then develop an annealed importance sampling (AIS) procedure for estimating partition functions of restricted Boltzmann mac...

متن کامل

A Study of Maximum Matching on Boltzmann Machines

The Boltzmann machine is one of the most popular neural network models used to cope with diicult combinatorial optimisation problems. It has been used to nd near optimum solutions to such hard problems as graph partitioning and the Travelling Salesman problem. However, very little is known about the time complexity of solving combinatorial optimisation problems on Boltzmann machines. This issue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011